Sapienza Università di Roma, CNRS,VeriQloud : “Experimental verifiable multi-client blind quantum computing on a Qline architecture”

The exploitation of certification tools by end users represents a fundamental aspect of the development of quantum technologies as the hardware scales up beyond the regime of classical simulatability. Certifying quantum networks becomes even more crucial when the privacy of their users is exposed to malicious quantum nodes or servers as in the case of multi-client distributed blind quantum computing, where several clients delegate a joint private computation to remote quantum servers, e.g. federated quantum machine learning. In such protocols, security must be provided not only by keeping data hidden but also by verifying that the server is correctly performing the requested computation while minimizing the hardware assumptions on the employed devices. Notably, standard verification techniques fail in scenarios where the clients receive quantum states from untrusted sources such as, for example, in a recently demonstrated linear quantum network performing multi-client blind quantum computation. However, recent theoretical results provide techniques to verify blind quantum computations even in the case of untrusted state preparation. Equipped with such theoretical tools, in this work, we provide the first experimental implementation of a two-client verifiable blind quantum computing protocol in a distributed architecture. The obtained results represent novel perspectives for the verification of multi-tenant distributed quantum computation in large-scale networks.

The exploitation of certification tools by end users represents a fundamentalaspect of the development of quantum technologies as the hardware scales upbeyond the regime of classical simulatability. Certifying quantum networksbecomes even more crucial when the privacy of their users is exposed tomalicious quantum nodes or servers as in the case of multi-client distributedblind quantum computing, … Leggi tutto

Sapienza Università di Roma, LIN INL, IFN-CNR : “Variational quantum cloning machine on a photonic integrated interferometer”

A seminal task in quantum information theory is to realize a device able to produce copies of a generic input state with the highest possible output fidelity, thus realizing an optimal quantum cloning machine. Recently, the concept of variational quantum cloning was introduced: a quantum machine learning algorithm through which, by exploiting a classical feedback loop informed … Leggi tutto

Publication by UNIROMA1, CNR and CNRS “High-fidelity four-photon GHZ states on chip”

Mutually entangled multi-photon states are at the heart of all-optical quantum technologies. While impressive progress has been reported in the generation of such quantum light states using free space apparatus, high-fidelity high-rate on-chip entanglement generation is crucial for future scalability. In this work, we use a bright quantum-dot based single-photon source to demonstrate the high … Leggi tutto

Italian Quantum Weeks, 13-18 April 2024

Quantum Lab is pleased to announce the 2024 edition of the Italian Quantum Weeks (https://quantumweeks.it) exhibition “Speak the Unspeakable: A Journey into Quantum Mechanics” to be held at the Botanical Garden of Rome from 13 to 19 April. The event is organized in collaboration with the Department of Physics, the Museum of Physics and the … Leggi tutto

LIN INL: “Measuring relational information between quantum states, and applications”

The geometrical arrangement of a set of quantum states can be completely characterized using relational information only. This information is encoded in the pairwise state overlaps, as well as in Bargmann invariants of higher degree written as traces of products of density matrices. We describe how to measure Bargmann invariants using suitable generalizations of the … Leggi tutto

Un cloud quantistico sicuro: da oggi è possibile proteggere la privacy di gruppi di utenti che effettuano calcoli contemporaneamente su server distanti

Un gruppo di ricerca internazionale ha ideato e dimostrato che è possibile effettuare calcoli da remoto su processori quantistici mantenendo intatta la privacy di tutti gli utenti coinvolti. I risultati dell’esperimento, condotto presso il Quantum Lab dell’Università Sapienza di Roma, sono stati pubblicati sulla rivista Nature Communications e costituiscono un passo in avanti fondamentale verso … Leggi tutto

PHOQUSING Workshop, 28-30 November 2023

The PHOQUSING workshop, held at Sorbonne Université, just ended. Approx 30 participants had been involved in fruitful discussions and new plans. List of speakers: Gonzalo Carvacho  Giovanni Corrielli  Beatrice Polacchi Dominik Leichtle Chin-Te Liao Léo Monbroussou  Ernesto Galvão Bo Yang Mina Doosti  Programme:

Multi-client distributed blind quantum computation with the Qline architecture

Qline

Universal blind quantum computing allows users with minimal quantum resources to delegate a quantum computation to a remote quantum server, while keeping intrinsically hidden input, algorithm, and outcome. State-of-art experimental demonstrations of such a protocol have only involved one client. However, an increasing number of multi-party algorithms, e.g. federated machine learning, require the collaboration of … Leggi tutto

LIN INL article “Quantum circuit compilation and hybrid computation using Pauli-based computation”

In a recently published piece of work funded by PHOQUSING, PhD student Filipa Peres and PHOQUSING PI Ernesto Galvão, both from INL, explore a universal model of quantum computation known as Pauli-based computation. They show that this model can be used to compile quantum circuits dominated by Clifford gates, demonstrating helpful quantum resource savings in … Leggi tutto