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What was planned (from Annex I:) 

 

D6.1: Efficient calibration toolbox for complex reconfigurable interferometers [18] 

Calibration of complex reconfigurable circuits represents a progressively demanding task when the 

size of system increases, given the large number of integrated components. Different techniques for 

the characterization of large size integrated systems will be developed and tested, in order to provide 

an efficient toolbox to calibrate and program the operation of the reconfigurable interferometers. 
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What was done 

 

Nowadays multi-mode optical interferometers are fundamental building blocks of modern optics. 

They represent the most viable platforms for successful implementation of several computation 

schemes that take advantage of optical processing. Examples range from optical neural networks, 

optical reservoir computing, optical simulation of complex physical systems, metrology schemes, to 

the emergent applications in quantum computation and information protocols. 

The realization of such routines requires high levels of control and tunability of the parameters that 

individuate the optical operations. More precisely, successful implementations of optical-based 

algorithms with multi-port interferometers require two main preliminary calibration stages. The first 

one is a strong and accurate reconstruction algorithm that individuates the element of the transfer 

matrix of the optical circuit from a suitable set of measurements. The second stage regards the ability 

to control the device to perform a given operation on the field modes, for instance via reconfigurable 

interferometers. These two calibrations become a not trivial task when the size of the interferometer 

is large and in the presence of experimental imperfections. In the following we describe the strategies 

developed within this deliverable for what concerns (i) reconstruction of the unitary matrix 

implemented by multi-port interferometers and (ii) calibration and correct tuning of reconfigurable 

circuits by exploiting optimization and machine learning-based algorithms. Note that the two methods 

are strongly interconnected. For example, a good reconstruction algorithm produces an accurate 

model that links the observed data to the optical circuit parameters. This is essential to build a good 

training set for further calibrations based on machine learning methods. On the other hand, black box 

approaches such as optimization and learning algorithms provide solutions for the task of circuit 

characterization when the response of the device is unknown. 

 

(i) Reconstruction algorithms for multi-mode linear optical networks 

 

Problem statement 

Any linear operation 𝑈̂ acting on the annihilation (creation) operators of the electromagnetic field in 

the mode 𝑖, i.e. operations that preserve the number of photons, can be expressed as follows 

𝑎𝑖 → 𝑈̂†𝑎𝑖𝑈̂ = ∑ 𝑈𝑗𝑖 𝑎𝑗

𝑗

 (1) 

where 𝑈𝑗𝑖 is the unitary matrix representation in the Fock space of the operator 𝑈̂. The same relation 

holds for classical states of light, by replacing the operators 

𝑎𝑖 with the complex field amplitudes 𝐸𝑖  in the right-hand 

side of Eq. (1). In other words, matrix 𝑈𝑗𝑖 expresses how the 

field amplitudes propagate through a multi-mode linear 

optical network. 

Note that the optical modes 𝑖 can be in principle any degree 

of freedom of light, such as polarization, path, time arrival, 

frequency, angular and transverse momentum. 

Several algorithms have been proposed to reconstruct the 

matrix elements in the photonic community. One kind of 

approach aims at finding an analytic solution from single- 

and two-photon quantum measurements for individuating 

the elements of the matrix expressed in their polar 

representation, i.e. 𝑈𝑖𝑗 = 𝜏𝑖𝑗 𝑒
𝑖 𝜙𝑖𝑗, without any assumption 

on the internal architecture of the interferometer 

[Laing2012]. Since this analytic method is not robust versus 

Figure 1. Model of a multi-port interferometer. We 

assume that a real interferometer can be seen as an 

ideal one implementing a unitary transformation 𝑈 

plus layers of input and the output losses (beam 

splitter in the figure) and phase instabilities 

(sparks) due to fiber connections. 



 
 

 

 

the unavoidable noise of experimental data, alternative reconstruction algorithms look for the solution 

through numerical minimizations [Tillmann2016, Spagnolo2017]. In this last class of methods we 

can distinguish between black box approaches that exploit machine-learning and the procedures 

which include knowledge of the interferometer structure in the minimization. 

In the following we report our results for what concerns a black-box approach for the reconstruction 

of the moduli 𝜏𝑖𝑗and the phases 𝜙𝑖𝑗.  

 

Losses and moduli estimation 

We start our investigation from the estimation of the moduli 𝜏𝑖𝑗 . We know that the 𝜏𝑖𝑗
2  is the 

probability to find a single-photon in the mode 𝑗 given the initial mode 𝑖 or, alternatively, the fraction 

of a classical field intensity in the mode 𝑗. This observation allows us to define the matrix 𝑃𝑖𝑗 = 𝜏𝑖𝑗
2 . 

However, in a single-photon or single laser beam intensity experiment it is not possible to measure 

the exact matrix due to the unavoidable mode-dependent photon losses that could exist in the 

preparation and collection stages (see Figure 1). Then the actual measured matrix 𝑀𝑖𝑗 can be modeled 

as follows 

𝑃 = 𝐿2𝑀𝐿1 (2) 

where 𝐿1and 𝐿2are diagonal matrices expressing the effect of the input and output losses respectively. 

The latter takes into account also eventual differences in the detection efficiencies among the modes. 

 

The first approach we propose to solve Eq. (2) is the use of Sinkhorn's theorem which states that any 

doubly stochastic matrix can be 

decomposed into the product among two 

diagonal matrices and a matrix with real 

and non-negative entries [Sinkhorn1967], 

as in Eq. (2). There are several algorithms 

in literature based on this theorem to 

retrieve the matrices  𝑃, 𝐿1, 𝐿2 from the 

measurements in 𝑀 [Idel2016]. The idea 

behind these algorithms is that in absence 

of losses the sum of the columns and rows 

of 𝑀 should be one. Therefore, the 

algorithms try to normalize the rows and 

columns iteratively until the convergence 

is reached. They were formulated in 

contexts different from the photonic 

community. In this deliverable we applied 

these concepts to solve linear optical 

problems. We tested this method 

experimentally with a 3-mode integrated 

interferometer optical device and a 

continuous wave laser at the wavelength 

of 785 nm. The comparison between the 

measurements 𝑀and reconstructed matrix 

𝑃 that contains the true squared moduli of 

𝑈 is reported in Figure 2. 

 

Figure 2. Application of the Sinkhorn theorem for the reconstruction of the 

squared moduli of the matrix of a 3-mode integrated chip. a) The input-

output distribution of a continuous wave laser sent into the device. b) The 

matrix after the loss purification. c) Additional loss inserted in the third 

input. The algorithm retrieves again the correct distribution reported in d). 

The distributions in b) and d) have a fidelity of 99 % that proves the 

algorithm effectiveness in different lossy configurations. 



 
 

 

 

The second approach exploits the reconfigurability of optical interferometers that change 𝑃 but 

without affecting the loss matrices. Here we do not require to measure the field intensity distribution 

from each input port as in the previous method. In fact, this second method is effective even by 

injecting the radiation from one input and can thus be used to obtain information on a specific 

submatrix of the full evolution 𝑈. In this scenario we would be able to retrieve a column of 𝑃 and the 

output losses 𝐿2. This can be done by observing that the sum 𝑆(𝜃) of the measured column elements 

of 𝑀 = 𝐿2𝑃 is constant for any configuration 𝜃 of the optical circuit if the output losses are 

homogenous among the modes. Thus, in the most general scenario in which the losses are mode-

dependent, we look for the diagonal matrix 𝐿2 such that the variance of 𝑆(𝜃) is zero. For such a 

minimization an analytical solution can be found, but it can be solved also via a numerical approach 

which may present improved stability in the presence of experimental measurement errors. 

We tested this second algorithm in a 4-mode reconfigurable optical circuit. The measurement was 

performed with a continuous wave laser at the wavelength of 785 nm injected in one of the input 

modes of the chip. The field intensities distribution in the 4 output ports was recorded via likewise 

power meters. In Figure 3a, we report the trends of the four measured intensities when we vary the 

dissipated power in one heater of the reconfigurable interferometer. In particular, the sum of the 4 

signals is observed to be not constant, thus corresponding to a scenario of unbalanced losses. In Figure 

3b, we report the same curves after applying the minimization of the variance of such a sum. In Figure 

Figure 3. a) Recording of the field intensity at the outputs of a 4-mode reconfigurable integrated device for different settings 

of the dissipated electrical power in one heater. b) After the minimization of the variance, losses are identified and the 

curves corrected accordingly. c) Additional loss inserted in the output mode 1 that is corrected by the algorithm in the panel 

d). Note that the curves in b and d are the same. This confirms the effectiveness of the algorithm in different loss conditions. 



 
 

 

 

3c, we add an additional loss in the mode 1, while in Figure 3d we verify that the algorithm is able to 

recover again the correct distributions.  

 

Reconstruction of the internal phases with classical light 

In this section we show the possibility to reconstruct the internal phases of the matrix elements 𝜙𝑖𝑗 

with a classical light source. Previous methods use the visibility of Hong-Ou-Mandel (HOM) 

[Hong1987] effect for this task since it is not sensitive to input/output losses and phase instabilities 

[Laing2012]. However, the time needed to estimate HOM visibilities with an adequate accuracy is 

sometimes considerable due to the need of single-photon sources which limits the collection statistics.  

Here we show that an analogous quantity can be retrieved from the cross correlation between two 

coherent laser beams. The measurement scheme is presented in Figure 4a. The laser source is split 

and sent into the network in modes (h,k). 

The additional phases 𝜑1 and 𝜑2 account 

for eventual phase instabilities in the optical 

paths between the sources and the 

interferometer. For example, these 

instabilities could be due to the input fiber 

connections that are sensitive to thermal 

and mechanical fluctuations. The cross 

correlation is defined as 𝐶𝑖𝑗
ℎ𝑘 = 1 −

<𝐼𝑖 𝐼𝑗>

<𝐼𝑖><𝐼𝑗>
, where 𝐼𝑖 and 𝐼𝑗 are the field 

intensities in the corresponding output 

modes and <⋅> is the time average. We 

require that the external phase fluctuations 

𝜑 = 𝜑1 − 𝜑2 have zero-time average. This 

his means to ask for < 𝑒𝑖𝜑 >= 0 and <
𝑒2𝑖𝜑 >= 0. In general, mechanical and 

thermal phase fluctuations of the fiber 

connections do not satisfy these conditions. 

This problem can be solved by adding a phase modulator in one of the two input paths. In the latter 

condition, the external phase contribution can be 

expressed as < 𝑒𝑖(𝜑𝑀+𝜑𝑇) >, where 𝜑𝑀 is the modulated 

phase and 𝜑𝑇 is the mechanical and the thermal noise. 

Since the two contributions are uncorrelated we can write 

< 𝑒𝑖(𝜑𝑀+𝜑𝑇) >=< 𝑒𝑖𝜑𝑀 >< 𝑒𝑖𝜑𝑇 >. This can be 

satisfied by controlling the phase modulation such that <
𝑒𝑖𝜑𝑀 >= 0 and < 𝑒2𝑖𝜑𝑀 >= 0, e.g., with a triangular 

modulation or through a white noise signal of appropriate 

amplitude. The residual dependence from the input losses 

can be removed by introducing an additional amplitude 

modulation with frequency 𝜔 (see Figure 4b). By 

averaging the intensities over time and 𝜔, the final 

expression for the cross correlation is equivalent to the HOM visibility: 

𝐶𝑖𝑗
ℎ𝑘 = −

2𝜏𝑖ℎ𝜏𝑖𝑘𝜏𝑗ℎ𝜏𝑗ℎ

𝜏𝑖ℎ
2 𝜏𝑗𝑘

2 + 𝜏𝑗ℎ
2 𝜏𝑖𝑘

2 𝑐𝑜𝑠(𝜙𝑖ℎ + 𝜙𝑗𝑘 − 𝜙𝑖𝑘 − 𝜙𝑗ℎ) (3) 

To test this method developed for the phase measurement, we performed two proof-of-principle 

experiments. The idea is to test the setup in Figure 5 by considering as 𝑈 a second beam-splitter. The 

Figure 5. (a) Schematic of the apparatus for the reconstruction of the 

matrix phases with a classical light source. (b) Apparatus with phase 

and amplitude modulations via EOMs (electro-optic modulators) to 

remove the dependence from the input losses and phase fluctuation in 

the cross-correlation measurement. 

Figure 4. Apparatus for the proof-of-principle 

experiment with a Mach-Zehnder interferometer 

encoded in the polarization. 



 
 

 

 

resulting structure is equivalent to a Mach-Zehnder interferometer, that we implement in polarization 

via two polarizing beam-splitter (PBS) and an intermediate liquid-crystal (LC, with the slow axis at 

45° with respect to the horizontal direction (see Figure 4). To satisfy the conditions < 𝑒𝑖𝜑𝑀 >= 0 and 

< 𝑒2𝑖𝜑𝑀 >= 0 we choose a discrete set of three angles {𝜑0, 𝜑0 +
2

3
𝜋, 𝜑0 +

4

3
𝜋} for the phase of the 

liquid crystal, instead of continuously varying the phase. In the preliminary stage we measure the 

input power and the efficiencies of the power-meters to take into account the input losses since we 

do not have an amplitude modulator operating at the right frequency at this moment in the laboratory. 

The result of the cross- correlation measurement was 𝐶 = 0.497 ± 0.007 that is compatible with the 

theoretical expected value of 𝐶𝑇ℎ𝑒𝑜 =  0.5. 

 

Such a method to retrieve HOM visibility-like quantities with classical light could speed up the time 

needed to collect enough data for the reconstruction of the phases. This could help in the collection 

of training sets for calibration based on neural networks or machine learning protocols, as we discuss 

below. For example, neural networks are a fundamental tool in absence of full knowledge on the 

transfer function between the control parameters of a large-scale reconfigurable interferometer, such 

as the dissipated electrical powers in the heaters, and the matrix elements.  

  

(ii) Calibration of reconfigurable integrated optical circuit via neural networks 

 

Reconfigurable 3-mode interferometer in single photon regime: 

The problem of reconstructing the dynamic evolution of a circuit has been proven to be a difficult 

data analysis task, especially when the dimension of the system increases and the effect of noise 

becomes not negligible. The problem becomes particularly challenging when the circuit response 

function depends on the settings of different parameters and consequently on their relative cross-

talks. 

To investigate alternative calibration procedures which can be easily adapted to circuits with higher 

dimensions, we have studied the response function of an integrated multi-arm interferometer 

fabricated by femtosecond laser writing technique. The platform tested consists in a three-arm 

interferometer, representing the generalization of a 2-arm Mach-Zehnder interferometer and is 

represented in Figure 6a. Light injected into the device will undergo an evolution dependent on optical 

phase shifts. The device is capable to encode up to two independent optical phase shifts that can be 

manipulated through several thermo-optical phase shifters. The latter are integrated optical phase 

shifters which can be tuned by dissipating electrical currents by ohmic resistors. The correct 

calibration of the device response when different currents are applied is crucial in order to operate 

with the device. 

Such a response depends on many parameters, both static and dynamical elements, since different 

resistors can be turned on. In general, the application of a pair of voltages (𝑉1, 𝑉2) generates a different 

global phase shift, for a fixed input, along each optical path, resulting in a different action of the 

device. Therefore, the investigation of an efficient calibration method with different single photon 

input states is generally not trivial. The reconstruction of the response adopting the conventional 

method --- maximum likelihood estimation (MLE) based on fitting procedure --- in both single- and 

two-photon regimes has been demonstrated in [Polino2019]. This procedure requires a large amount 

of post-processing efforts, and a great amount of calibration data to obtain appropriate calibration 

results. Moreover, when the system complexity increases this approach is expected to be even more 

unpractical and not easily scalable to larger devices.  



 
 

 

 

When interested only in the reconstruction of the output probability, related to the modulus of the 

coefficients of the circuit transformation matrix, a calibration procedure based on a neural network 

(NN) algorithm has proven to overcome the aforementioned issues [Cimini2021]. The strength of 

using a machine learning approach is that it does not require an analytic model of the device 

functioning, but it directly reconstructs from the observed data the map linking the voltages applied 

on the different resistors of the device and the single-photon output probabilities. 

The device functioning can be studied by sending single photons in one of the three inputs and 

collecting the photon counts at the three outputs of the device. In this way, single-photon probabilities 

𝑃𝑖𝑗 for each output 𝑗 (𝑗 =  1, 2, 3) are measured by changing the input arm i of the single-photon state 

and tuning the power dissipated on the internal resistors. We tune the voltages applied to each resistor 

independently, while keeping the others off, studying the change in the outputs probabilities 

distributions. The set of collected data at the three outputs, for different values of tensions applied 

and for different inputs, is used to train the NN. More specifically, we measured the results obtained 

after the application of 𝑛 different tensions values to each of the two resistors in the device. This gives 

a tension grid with 𝑛 ×  𝑛 different tension pairs associated with the relative measured probabilities. 

Such data are successively used for the training. 

We employ a feed-forward neural network, which is particularly suited for this purpose. After it has 

been trained, the NN is able to reconstruct the complex nonlinear map between a given input — the 

feature vector 𝒙 — and the associated output vector 𝒚. In our scenario x represents the measured 

output probabilities, while the vector 𝒚 corresponds to the applied voltages. The structure of the 

implemented NN is shown in Figure 6b. It consists of a series of layers of nodes activated in cascade 

through non-linear activation functions. 

In order to select the most suitable architecture for the NN we performed an initial study on a model 

emulating the functioning of a three-mode interferometer. Such preliminary study allowed us to 

identify the network architecture (number of nodes, layers, activation functions, initialization 

parameters) achieving higher performances and the amount of training data required to accomplish 

the calibration task. What we have found is that to achieve a good estimate in the full range of 

accessible tensions, it was necessary to incorporate into each training example additional information 

in order to remove ambiguities in the evaluation of the overall response function. Such ambiguities 

derive from the non-injectivity of the output probabilities, resulting in the presence of multiple 

parameter points that correspond to the same probability values. In particular, we incorporate into 

each training example the further set of probabilities 𝑃𝑖𝑗
∗

 corresponding to the probability values 

obtained by changing the two voltages of a fixed amount (𝑑𝑉1, 𝑑𝑉2). Therefore, the single element 

of the training set is given by {𝒙, 𝒚} = {(𝑃𝑖𝑗, 𝑃𝑖𝑗
∗ ), (𝑉1, 𝑉2, 𝑉1 + 𝑑𝑉1, 𝑉2 + 𝑑𝑉2)}. The 15% of the data 

(validation set) is used to compute the actual performances of the trained NN, avoiding overfitting 

issues, on an independent set of data. The NN performances in reconstructing the device response 

function can be obtained by studying different figures of merit which quantify the distance between 

the reconstructed output vector and the real one. 

As a follow-up investigation, we studied how the training performances depend on the size of the 

training set. As a result, we report in Figure 6d the values of the normalized root mean squared error 

(NRMSE) obtained by training the network with different grid sizes. As expected, increasing the 

number of data improves the performances on independent test sets. 

After such preliminary studies the method has been tested training the NN directly on experimental 

data. The NN demonstrated optimal results in accurately predicting the experimental data as shown 



 
 

 

 

in Figure 6c.  The same NN structure was trained and tested on a different device having the same 

layout of the previous one. In particular, 80% of the predicted voltages were found to be less than 

0.1V from the true values, demonstrating the suitability of the NN for calibrating a series of integrated 

photonic devices, as in a mass production framework. 

Our approach has shown interesting calibration performances with respect to conventional 

techniques, in terms of both quality of the reconstructed response and required resources. Detailed 

modeling of the device is not necessary and different devices having the same structure can be 

efficiently calibrated using the same NN structure. This black-box method is promising for a variety 

of applications, such as Quantum Metrology. When a voltage-to-phase map is provided it can be 

optimally adopted for single- and multi-phase estimation problems [Valeri2020]. 

Programming the reconfigurable 32-mode continuously-coupled interferometer  

We applied analogous black-box approaches to the reconfigurable integrated device based on a 

continuously-coupled waveguide architecture. It comprises 32 optical modes arranged in a 2D 

triangular lattice and 16 heaters. The main issue to control this kind of reconfigurable circuits regards 

the difficulty to find an analytical model that links the dissipated powers and the elements of 𝑈. 

Therefore, black-box optimization algorithms or machine learning methods (see Figure 7) could be 

promising solutions to find a way to control these devices and implement a given transformation.  

Our preliminary investigation aimed at finding the function that better approximates the 

correspondence between a given squared moduli column of the implemented unitary and the set of 

applied voltages. The RBFOpt algorithm [Costa2018] is a black-box optimization algorithm that 

exploits the Radial Basis Function method, which builds and iteratively refines a surrogate model of 

Figure 6. a) Scheme of the integrated circuit: Single photons are injected in one of the 3 input ports of the integrated circuit; at the 

outputs they are detected by avalanche photodiodes. The output probabilities 𝑃𝑖𝑗 can be reconstructed as a function of the applied 

voltages 𝑉1 and 𝑉2 controlling the internal optical phase shift among the interferometer arms. b) Scheme of the NN architecture 

employed for the calibration process. c) Input-output probability 𝑃𝑖𝑗 with 𝑖 = 1, 𝑗 = 1 as a function of the applied voltage pairs. 

The blue surface represents the experimental measured results while the red dots show the reconstruction performed by the trained 

NN. d) NRMSE computed over the validation set and achieved with different sizes of the training set. 



 
 

 

 

the unknown objective function. In other words, the algorithm tries to minimize an unknown function 

𝑓(𝜃) (a black-box) that can be evaluate when providing some input values. The 𝜃 variables are 

bounded on a finite interval that is chosen a priori. The utility of RBFOpt is addressed to problems 

for which each evaluation of the objective function  𝑓(𝜃) is expensive in terms of computing 

resources. The task is to find a 

global minimum of 𝑓(𝜃) with 

the minimum evaluation steps. 

Due to the demanding cost in 

terms of required resources for 

evaluating the black-box 

function and since the 

function is unknown, there are 

not first derivatives at 

disposal, thus RBFOpt works 

best on problems that are 

relatively small dimensional 

and for which the interval for 

the solution is not too large. In 

the case of the control over the 

implemented unitary matrices, 

we face with an unknown 

function that links the 

variations of the squared 

moduli of the matrix with the variations in the applied voltages. The algorithm performs several 

evaluations of the black-box function aimed at finding the perfect match to reproduce a target column 

distribution, chosen by the user. At each evaluation, the algorithm sets the resistors’ voltages by 

choosing the configurations within the pre-given bounds and it collects the output distribution of the 

squared moduli for the selected column. Subsequently, the algorithm compares the measured output 

to the target distribution. After some stabilization steps, in which the algorithm tests the operating 

space, RBFOpt starts to choose the set of applied voltages in order to minimize a quantity that has 

been chosen a priori. In this particular case, we consider the similarity 𝑆 between the target 

distribution and the measured distribution at each step. Thus, the minimization is performed on the 

quantity 1-S, since we want that the two distributions are as similar as possible (𝑆 is close to 1). The 

measurement for the intensity columns was performed by injecting a single photon in one input of 

the chip, heralded by the detection of its twin. We tested the performance of the algorithm for two 

target distribution. The first target is a generic squared moduli distribution for a random Haar matrix. 

In Deliverable 2.1 and in [Hoch2021], the analysis about the potentiality of the integrated photonic 

chip in performing random Haar matrices displayed the capability to sample a localized portion of 

the entire matrix space. Therefore, it is fundamental to take into consideration that the randomly 

extracted target distribution might be out of range for our optical platform, thus the outcome is not 

much significant if it is analyzed out of context. After 100 iterations of the algorithm, we obtained 

that the similarity S is 70%. The second distribution is the one employed as a reference during the 

first characterization of the chip. Then, the set of applied voltages is known a priori. To check the 

actual effectiveness, we increased the iterations up to 400. Even in this case, the similarity was equal 

to 71%, highlighting the limitations of the algorithm. This confirms that the algorithm works not very 

well with complex response functions [Suprano2021]. 

 

We then move to a different approach exploiting other machine learning methods. In the previous 

section dedicated to the calibration of a 3-mode interferometer, we have seen that NN are particularly 

  

  

 

 

  
 
 
 

 
  
 
  

 
 
  
 
 

  

𝑉ሬԦ ↔ 𝜏𝑖𝑗
2 

Figure 7 Black-box approaches to control the reconfigurable continuously coupled 

integrated device. a) The RBFOpt algorithm searches iteratively the configuration of 

voltages 𝑉ሬԦ that generates the output distribution most close to the target 𝜏𝑖𝑗
2. b) The NN 

learns from the training data the functions that links the control settings  𝑉ሬԦ and the 

squared moduli 𝜏𝑖𝑗
2of the matrix elements. 



 
 

 

 

feasible to reconstruct an unknown function from labelled data and generalize the learned model for 

making predictions on new data. In this case, the NN is trained on a dataset composed by labelled 

measured column distributions. The labels are constituted by the set of applied voltages. The 

collection of the training set was performed by injecting a single photon in one input of the chip, 

heralded by the detection of its twin. The input mode was changed among three ports, and this has 

allowed us to measure a sub-matrix of size 32 × 3 of squared moduli. The labels, constituted by the 

applied voltages, are derived from the uniform sampling of the dissipated heats. The dataset is 

composed of 1535 labelled sub-matrices. We collected the two-fold coincidences between the outputs 

of the chip and the heralding signal in an integration time of 150 s. The structure of the NN is reported 

in Errore. L'origine riferimento non è stata trovata.. 

 

Layer Input and Output dimension 

Input linear layer (activation function: 𝑡𝑎𝑛ℎ) (96, 1024) 

2nd linear layer (activation function: 𝑡𝑎𝑛ℎ) (1024, 2048) 

3rd linear layer (activation function: 𝑆𝑒𝐿𝑈) (2048, 248) 

Output linear layer (activation function: 𝑅𝑒𝐿𝑈) (248, 16) 
Table 1. In the table, the structure of the NN architecture that was employed for the control of the squared moduli sub-matrix. The 

input is a vector of dimension 96 = 32 × 3 corresponding to the measured single-photon distributions in the experiment. The output 

is a vector with 16 components that contains the voltages to be applied to obtain the given sub-matrix. 

During the training stages, we obtained an average similarity 𝑆 of 95.8% between predicted voltages 

and test dataset labels, with maximum value of 𝑆 at 

99.9% and minimum value of 87.7%. These results 

show the ability by the NN to generalize the platform 

model. In addition, we tested the trained NN over the 

reference distribution of intensity from one input, 

employed during the first alignment and calibration of 

the chip.  We set the power supply that controls the 

electrical circuit of the heaters with the voltages 

predicted from the NN for this distribution. Then, we 

measured the intensity again and we obtained a 

similarity of 96.6% with the reference distribution. A 

qualitative comparison is inserted in Figure 8. 

 

Complete toolbox: conclusions 

The promising outcome of the NN in the squared 

moduli-voltages prediction opens the pathway to the 

full control of the photonic chip. Indeed, the previous 

measurements were performed by sending single-

photon input, thus enabling for the NN the 

reconstruction of the map between voltages and unitary matrix moduli. By adding further 

measurements to the process, it is possible to extend the calibration procedure to acquire information 

also on the map between voltages the complex phases of the transformation. In this perspective, it is 

necessary to find an optimal strategy that allows us for the collection of the phase dataset for different 

voltages configurations. More specifically, for the 32-mode device the dataset should be composed 

of two 32 × 3 matrices, one containing the squared moduli and one containing the phases, both 

labelled to be linked with the corresponding set of applied voltages. The question that arises at this 

point is how to measure the complex phases of the unitary matrices and thus prepare the training 

dataset. As previously discussed, measurements of the HOM visibilities requires long measurement 

runs for each sub-matrix, leading to large acquisition times for the training set. An alternative solution 

Figure 8. In the two color-maps a single-input intensity 

distribution in the 32 output modes. Above the reference 

distribution, below the distribution measured with the 

voltages predicted from the network. 



 
 

 

 

which can be more effective in larger devices is the previously introduced measurement of the cross 

correlations with classical light proposed in the previous section. The time needed for their estimation 

is remarkably shorter. Therefore, future steps will be the arrangement of the cross-correlation 

measurement setup in Figure 4 for the 32-mode integrated interferometer. 

From our analysis emerges that learning methods are the most effective for the control and the 

calibration of large-scale integrated devices. Other algorithms such as the random forest regressor or 

genetic algorithms can be investigated for the task. Regarding genetic algorithm [Spagnolo2017], 

they have been shown to be applicable as a minimization toolbox for static circuits. However, they 

rely on some a-priori modeling of the device response function, which is not trivial for a dynamical 

scenario. As a general note, other machine learning schemes that do not involve neural networks are 

less expensive in terms of computational cost and easier to interpret. On the other, they can fail when 

the space of the parameters is too large. Other routines for dimensionality reduction to be applied first 

to the data, such as principal component and linear discriminant analysis, could mitigate such a 

limitation. Notwithstanding, in large scale optical circuits, the NN approach remains the most suitable 

and effective for this task.   
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