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What was planned (from Annex I:) 

 

D2.1: Architecture for femtosecond laser-written platform [18] 

Report on the definition of the most appropriate architecture for integrated circuits based on the laser-

writing technology, for manipulation of multiphoton states. Peculiar properties of the fabrication 

technique, such as polarization control and three-dimensional capabilities, will be included in the 

analysis. 
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What was done 

 

One of the advantages of photonic platforms in quantum information processing is the possibility to 

decompose any unitary transformation of single- and multi-photon states in a sequence of elementary 

linear optical units. In literature, two universal schemes have been proposed to realize any 

transformation by means of beam splitters and phase shifters [Reck1994, Clements2016]. These 

methods have found straightforward experimental implementations in integrated photonic devices, 

which offer in addition the ability to reconfigure the circuit by exploiting tunable phase shifters. 

Furthermore, these architectures present the possibility of being at the same time programmed, to 

reach a specific unitary operation, as well as drawing Haar random matrices for sampling-based 

algorithms. In parallel, this discrete decomposition requires a certain number of layers to implement 

arbitrary transformations, and thus sensitivity to errors and photon losses must be taken into account. 

Crucial aspects regard indeed the scaling of the optical elements and of the circuit depth required to 

realize m-port interferometers. 

The femtosecond laser-writing technology presents the unique capability of enabling 3-dimensional 

architectures for waveguide fabrication. This enables the possibility of fabricating arrays of several 

waveguides placed parallel one to each other, and are continuously coupled by evanescent-field 

interaction. This represents a promising approach to implement large scale circuits with a more 

favorable scaling with respect to losses and fabrication imperfections. However, in the literature there 

is still not a systematic and complete study on the universality of such approach for multi-mode 

interferometers fabrication. 

In Deliverable 2.1 we have analyzed these two architectures as the most appropriate to implement 

large reconfigurable circuits with the femtosecond laser-writing technology. 

 

Continuously-coupled architectures 

 

We investigated as possible solutions the continuous-coupling model of radiation among waveguides 

arranged in 1D or 2D lattices (see Figure 1).  

In this approach the geometry of the lattice determines the Hamiltonian H of the system. The latter 

can be expressed in terms of the annihilation and creation operators of the electromagnetic field as  

𝐻 = ∑ 𝑘𝑖 𝑎𝑖
†𝑎𝑖

𝑖

 + ∑ 𝑐𝑖𝑗𝑎𝑖
†𝑎𝑗

𝑖≠𝑗

  (1) 

where the 𝑘𝑖 are the site energies, and the coefficients 𝑐𝑖𝑗 are the coupling coefficients among 

neighbor sites. Then, the equation that regulates the propagation of the field in the circuit considering 

Figure 1. Cross section of waveguide lattices. The time coordinate of the evolution corresponds to the propagation axis z 

perpendicular to the figure plane. (a) One dimensional lattice, (b) rectangular lattice and (c) triangular lattice. In the latter 

geometry each site has the largest number of first neighbors. It is the more compact structure in terms of circuit length and 

thus of photon insertion losses.   



 
 

 

 

only first neighboring interactions, i.e interactions among sites that are distant from each other by one 

lattice pitch 𝑑, will be 

−𝑖
𝑑𝑎𝑥

𝑑𝑧
= 𝑘𝑥𝑎𝑥 + ∑ 𝑐𝑥𝑖𝑎𝑖

|𝑖−𝑥|=𝑑

  (2) 

where 𝑧 is the axis of light propagation that here has the role of the time coordinate. In all the 

calculations we consider ℏ = 1. 

 

Minimum circuit length 

Our first study aimed at finding the optimal geometry of continuously-coupled circuits that minimizes 

the circuit length 𝐿𝑚 required to have a nonzero probability to reach any site of the lattice starting the 

propagation from any optical mode. To this aim we solved Eq. (2) for the one-dimensional lattice 

(Figure 1a) and for two 2D geometries, the square (Figure 1b) and triangular one (Figure 1c). In this 

calculation we consider for simplicity constant 𝑐𝑖𝑗  = 𝑐, since we are mainly interested at finding the 

scaling of 𝐿𝑚 with respect to the number of optical modes 𝑚. From our study, the triangular 

arrangement resulted to be the most compact structure in terms of the light spreading.  In particular, 

we find that 𝐿𝑚 ∼ √𝑚. Same considerations on the circuit minimum length can be applied to the 

discrete architectures. The comparison between the two types of integrated circuits is useful to 

understand the actual gain of the adoption of continuously-coupled waveguides. The estimation of 

𝐿𝑚 was performed for discrete circuits that follow the most recent decomposition scheme by 

Clements et al. [Clements2016]. Here, we considered the length of each beam-splitter and phase-

shifter, realized in their integrated counterparts as directional couplers and as bending of the 

waveguides respectively. It follows that in this case 𝐿𝑚 ∼ 𝑚.  

Further advantages can be found in the design of the fan-in and fan-out regions that link the circuit to 

the external fiber arrays. It is important to study how the length scales also for these parts of the 

circuit. In fact, we should at least check that advantages in compactness gained in the interferometer 

section are not vanished by long fan-in and fan-out sections. We found that as the number of modes 

increases, the length of these sections tends to be less relevant than the length of a Clements 

interferometer since it scales as ∼ √𝑚. Thus, it shares a similar scaling law as a three-dimensional 

continuously-coupled interferometer. An improved compactness may be gained if the 𝑚 fibers to be 

coupled are arranged on a two-dimensional grid, as in the devices reported in Figure 2. Note that such 

Figure 2. Examples of continuously-coupled optical circuits. a) Static 32-mode circuit based on the coupling among 

waveguides arranged in a 3D layout. The lattice displays a 2D triangular cross section in the transverse plane. In the scheme 

are highlighted the interaction region and the fan-in and fan-out to connect the chip with external fibers. b) Reconfigurable 

version of the circuit with 16 heaters that allows to change the unitary transformation implemented in the optical circuit. 

Figure b from Ref. [Hoch2021]. 



 
 

 

 

a configuration can be realized only in the 2D continuously-coupled architectures. In this scenario 

the maximum size of the fiber array cross-section, in either dimension, scales as ∼ √𝑚.  It follows 

that the length of the fan-in or fan-out section here scales as √𝑚
4

. This further contributes to limiting 

the device footprint and, hence, its optical insertion losses. 

As a practical example, we report in Figure 2a a 32-mode continuously-coupled optical circuit 

arranged in a 2D triangular cross-section lattice. The circuit was realized through the femtosecond 

laser writing (FLW) technique of waveguides. For what concerns analogous apparatuses realized 

according to the Clements decompositions, the length of the optical units strongly depend on the 

fabrication technology of the waveguides. We considered the FLW for a fair comparison between the 

two schemes. The device in Figure 2a requires a 7.5-cm long optical chip, while the discretely coupled 

interferometer with the same number of modes produced with the same technology would have 

required a device length of about 30 cm [Hoch2021]. 

 

Unitary transformations 

The unitary transformation 𝑈 that represents the operation of the optical circuit derives from the 

integration of the Hamiltonian in Eq. (1) over the interaction length, i.e. the circuit portion in which 

the waveguides exchange the radiation. Despite the aforementioned advantages in terms of circuit 

compactness, a general algorithm has still to be devised that provides a recipe on how to implement 

an arbitrary unitary transformation of the optical modes with this kind of device. All previous 

considerations to individuate the optimal design of the lattice regard homogeneous arrays, in which 

coupling coefficients are uniform across the array and along the waveguide direction. In addition, the 

evaluation of circuit lengths has been carried out only by considering the spreading of the light to all 

output waveguides, with no constraints on the unitary transformation provided by the circuit. As a 

matter of fact, homogeneous arrays produce highly symmetric transformations, which may not 

preserve for instance the complexity of the Boson Sampling problem that requires random extracted 

unitary circuits. 

We have then investigated the conditions necessary to implement a random unitary transformation in 

a continuously coupled architecture. They can be summarized as follows: 

 

● Modulation of propagation constants. Previous theoretical works [Banchi2017] have shown 

that a random time-modulation of the site energies, in a quantum walk on a one-dimensional 

chain of sites, is able to provide Haar-random transformations of the input states in the long-

time scale. In a photonic setting, such a quantum walk can be implemented by a photon 

propagating in planar waveguide arrays, where the propagation constant 𝑘𝑖 of the waveguides 

is modulated randomly along the 𝑧 direction, and in a different way in each waveguide, i.e 

𝑘𝑖 = 𝑘 + Δ𝑘𝑖(𝑧). A random transformation would then be achieved with a sufficiently long 

device, as recently experimentally demonstrated in a square and linear lattice geometries 

[Tang2021]. 

 

● Modulation of coupling coefficients. As further investigation developed in this deliverable, 

we made some consideration regarding the modulation of the parameters 𝑐𝑖𝑗 in Eq. (1). 

Random matrices can be obtained by applying small displacements to the waveguide positions 

from the lattice. In the simulation, the propagation constants were kept homogeneous 𝑘𝑖 =
𝑘 for simplicity, while 𝑐𝑖𝑗 = 𝑐 + Δ𝑐𝑖𝑗(𝑧). The deviations Δ𝑐𝑖𝑗 reflect the changes in the 

waveguide distances introduced for example by the random displacements along the 

propagation axis (see Ref. [Hoch2021]). 

 

 

 



 
 

 

 

 

Modulating the physical parameters 

We have investigated the modulations of the parameters that control the evolution through a 

continuously-coupled optical circuit in order to individuate the condition of the Haar randomness. 

We focused on the two 2D lattices, the square and the triangular ones, which can be implemented 

only via a 3D geometry of waveguides fabrications. The aim of the following simulations was to 

individuate the optimal design to realize Haar-random evolutions in the most compact way. We use 

as a figure of merit of the achieved randomness the quantity proposed in [Tang2021]. It is defined as 

the 𝐿2-distance between the single-photon probability distribution |𝑈𝑗𝑖|
2
 in the outputs 𝑗 given the 

input 𝑖, and the uniform distribution 
1

𝑚
, where 𝑚 is the number of the lattice sites. In Figure 3 we 

consider 𝑚 = 32 arranged in 4 columns and 8 rows according with the square and triangular lattices 

geometries. Such a figure of 

merit for 32x32 Haar-random 

matrices, averaged on 200 

extractions, is around 0.1665. 

In the first two colormaps the 

value of the distance has been 

reported for different values of 

the detuning Δ𝑘. In these 

circuits the couplings among 

first neighbor waveguides 

have been kept constant while 

the time evolution has been 

discretized in time steps of 

Δ𝑧 = 4𝑚𝑚. The 𝑘 coefficients 

have been uniformly and 

independently extracted in the 

range Δ𝑘 at each step. It is 

worth noting that the triangular 

geometry displays a better 

convergence towards the Haar-

random matrices with respect 

the propagation length 𝐿. This 

is confirmed also in the case of 

the same kind of modulation of the parameters 𝑐 with static propagation constants (the two plots 

below). Although this analysis can highlight some of the advantages of the triangular geometry, such 

figure of merit for the randomness is not conclusive. As further investigation, we report in Figure 4 

an insight regarding the histograms of phases, moduli and similarity among distributions |𝑈𝑗𝑖|
2
of the 

unitaries after a propagation length of 𝐿 = 36𝑚𝑚 and Δ𝑘 = 0.25𝑚𝑚−1 a) and Δ𝑐 = 0.125𝑚𝑚−1 

b). These conditions for extracting the transformations corresponds to an intermediate scenario in 

which the convergence towards the Haar-randomness is not completely reached. In Figure 4a it is 

evident the better convergence of the triangular lattice when compared with the analogous square 

circuit. From this further analysis emerges that the modulation of the couplings in the square lattice 

generates matrices very far from the Haar-random sampling (see Figure 4b). The reason behind this 

evident deviation from the triangular lattice could be the smaller number of first neighbors for each 

site (4 vs 6) and, consequently the number of couplings parameters (52 vs 73). In addition, the 

arrangement of the lattice in the 8x4 rectangular grid could break the symmetry of the square lattice 

which is not broken in the triangular case instead.  

Figure 3. Distance from the uniform distribution of the one photon evolutions in the 

triangular (blu scale) and square (green scale) lattices. In the first row we report the 

distances for the randomness introduced in the propagation constants, for different values 

of the amplitudes 𝛥𝑘 and circuit length 𝐿. The same analysis for the randomness in the 

𝛥𝑐. In all colorbars the minimum values of the distances are highlighted and compared 

with the Haar value. 



 
 

 

 

In summary, the triangular geometry results to be the most convenient for what concerns the light 

spreading (see previous section), and for implementing random evolution in the most compact and 

robust way. The modulations of the Hamiltonian investigated in this section can be performed in 

various way during the fabrication stage of the optical circuit. For example, the random modulations 

Δ𝑘(𝑧) have been realized in square and linear lattices with the femtosecond-laser writing technique 

[Gattas2008] by changing the writing speed of the waveguides (see Ref. [Tang2021]). In 

PHOQUSING we modulated the couplings Δ𝑐(𝑧) by slight displacements of the waveguides 

positions from a triangular lattice. This methodology can reproduce only static circuit or, 

equivalently, a single unitary transformation. In the following section we are going to illustrate a way 

to introduce dynamical modulation of the circuit parameters and thus obtain a reconfigurable device 

able to realize several Haar-random matrices. 

 

Towards reconfigurable continuously-coupled circuits. 

Starting from the above discussion we realized the reconfigurable circuit reported in Figure 2b, with 

the aim to implement several random generated unitary transformations [Hoch2021]. Before going 

into the details of the physical device, we show some numerical results regarding the actual possibility 

to realize reconfigurable circuits by means of heaters and the thermo-optic effect. 

In fact, the refractive index of the waveguide changes with the temperature. In integrated optical 

circuits phase shifts are realized through micro-resistive materials placed nearby the waveguide 

location. The dissipated electrical powers in the resistors induce a change in the refractive index of 

the waveguide and thus in the corresponding propagation constant. We have seen that to reach a good 

randomness it is necessary to tune individually each parameter 𝑘. This is not trivial to realize since it 

would require placing heaters inside the waveguide lattice. The solution that we have found in 

PHOQUSING is to exploit the static randomness provided by the modulation of the 𝑐𝑖𝑗(𝑧)  during 

the fabrication process of the triangular lattice, combined with a dynamic modulation of the 𝑘𝑖(𝑧) by 

a sequence of heaters placed on the top surface of the circuit. These heaters cannot in principle 

influence individually and independently each waveguide. Notwithstanding, a reasonable number of 

heaters along the propagation axis, together with an appropriate arrangement, allow us to sample 

      

          

    

      

          

    

  

  

Figure 4 a) Distributions on the phases, moduli and squared moduli columns of the unitary matrices generated by square (green) and 

triangular (blue) lattice compared with the Haar-random matrices (red). In this simulation we sampled 200 configurations of 

propagation constants in the range 𝛥𝑘 = 0.25𝑚𝑚−1, constant couplings  𝑐 = 0.2𝑚𝑚−1 , in time steps of 𝛥𝑧 = 4𝑚𝑚, for a total 

propagation of 𝐿 = 36𝑚𝑚. b) Same analysis for the coupling coefficients. Here they were sampled in the range 𝛥𝑐 = 0.125𝑚𝑚−1, 

while 𝑘 = 0.2𝑚𝑚−1. 



 
 

 

 

matrices very close to the Haar-random 

measure. In Figure 5 we report our results 

for what concerns the phases, moduli and 

similarity distribution for such kinds of 

circuit. In this simulation we consider 

again 8x4 triangular lattice with a 

propagation length of 𝐿 = 36𝑚𝑚, divided 

in 9 time steps in which the couplings have 

been modulated according to one 

extraction of 𝑐𝑖𝑗(𝑧) within an interval of 

amplitude Δ𝑐 = 0.125𝑚𝑚−1. In the light 

blue color the results when 9 heaters are 

placed per side on the top surface, for a 

total of 18 control parameters (the applied 

electrical currents). This means that each 

of them influences directly the 4 

waveguides placed under the heaters for a 

length of Δ𝑧 = 4𝑚𝑚. The other 

propagation constants are modified by 

considering a linear gradient of the 

temperature inside the lattice. The 

histograms correspond to 200 uniformly 

distributed Δ𝑘 up to 1𝑚𝑚−1 that it is 

equivalent to a random uniform extraction 

of the dissipated powers in the heaters. It is 

worth noting that, while the phases and the 

moduli distributions are in perfect 

agreement with the Haar matrices, the overlap between the histograms of the similarity is not optimal. 

This can be improved by changing the arrangement of the heaters on the top surface (middle-blue 

data) and by increasing their numbers (blue data). In the middle-blue case we consider odd time steps 

with two heaters per side like in the light blue configuration. In the even time steps, one heater controls 

the central four waveguide while the remaining four (two per side) are controlled by the other 

dissipated power. For the last case, that best reproduces the Haar-sampling, four heaters at each time 

steps are placed on the top and control two waveguides each. We remind that for this kind of 

architectures it does not exist an algorithm that tells how to link the dissipated powers to the matrix 

elements. The findings presented in this deliverable are one of the first numerical investigation in this 

direction. Note that in the discrete-decomposition schemes there exist already algorithms to set the 

optical circuit to sample from the Haar distribution. However, the phase shift values and beamsplitter 

reflectivities do not display trivial distributions which in turn require complex settings of the external 

control circuit. More precisely, by increasing the dimension of the matrix, the parameter distributions 

tend to be more and more peaked [Burgwal2017, Russell2017]. For example, the uniform sampling 

of the dissipated electrical powers employed in our investigation is far from the correct sampling to 

generate random Haar matrices in discrete optical circuits as shown in the numerical simulation of 

Figure 6. 

 

 

 

           

           
                      

           

Figure 5 Reconfigurable continuously coupled circuits in the triangular 

lattice arrangements. Appropriate settings of heaters on the top surface 

enable to reproduce Haar-random matrices in a reconfigurable way. The 

matrix are obtained by uniform sampling of the dissipated electrical power 

generated by the currents applied to the heaters. 



 
 

 

 

Implemented 32-mode device. 

We move now to the description of the physical integrated circuit showed in Figure 2b realized in 

PHOQUSING. The chip comprises 16 resistive micro-heaters patterned on the chip surface. The 

resistors are equally distributed on the two sides of the interaction region. An external power supply 

controls the currents applied to the resistors. In addition, we use an array length that is more than 

twice the estimated minimum length 𝐿𝑚 with our experimental parameters, in order to promote 

further mixing of the light across the waveguide array. The achieved randomness has been 

investigated experimentally, as described in Figure 6. We have tested the reconfigurability of the 

system by comparing the sub-matrix reconstructed by injecting single and pairs of photons in three 

inputs of the device with likewise random sub-matrix extracted from the Haar-distribution. Figure 7 

reports the results of the analysis that proves a high level of reconfigurability and a good overlap with 

the random matrices. In this regard, the first investigation was focused on the distributions of phases 

Figure 7. Comparison with Haar-random distribution. a) An example of a 3x32 submatrix reconstructed for a set of electrical 

currents applied to the heaters. b-c) Comparison of the phases and moduli of the 15 sub-matrix implemented and reconstructed 

in the experiment with likewise submatrix extracted from the Haar-distribution. d) Histogram of similarities between the 

squared moduli of columns belonging to experimental implemented transformations (blue) and of similarities between the 

squared moduli of Haar-random matrix (red). Figure from Ref. [Hoch2021]. 

Figure 6. In grey we report the phases and squared moduli distribution of matrix corresponding to Clements circuits in 

which the internal parameters have been extracted randomly according to a uniform distribution. The squared moduli 

distribution is not in accordance with the Haar-random matrices trend (red histogram). 



 
 

 

 

and moduli of matrix elements (Figure 7b,c). The second step was to quantify somehow the number 

of unitary transformations covered by extracting uniformly the electrical power dissipated in the 

heaters. The histogram in Figure 7d shows in blue the distribution of the similarities between the 

squared moduli of matrix columns resulting from different sets of dissipated powers and compared 

with the same quantity estimated for Haar random matrices. The values of the similarities and the 

overlap (62,4%) with the theoretical histogram of random unitary transformations are very 

encouraging for the task we are looking for. The latter result represents one of the first experimental 

investigations on the level of randomness that can be reached in this reconfigurable continuously-

coupled waveguide architecture by changing not individually the propagation constants via the 

thermo-optic effect.  

We remind that an exhaustive and conclusive answer regarding the possibility to extract matrices 

from a distribution closer to the Haar measure with a reconfigurable continuously-coupled waveguide 

architecture with a given geometry needs further studies both from a theoretical and experimental 

point of view. For example, future studies within PHOQUSING will focus on methods that allow one 

to control and program the transformations that the device can implement. This means finding a 

model that links the parameters of the unitary transformations to the dissipated electrical powers in 

the heaters, which is a problem still not addressed in the literature for reconfigurable continuously-

coupled waveguide circuits. We believe that the use of a black-box approach, via neural networks 

and optimization algorithms is effective and promising (see also Deliverable 6.1). Further 

improvements in the reconfigurability could be brought from modifications of the present device 

architecture, e.g. by increasing the number of heaters and by changing their arrangement with respect 

to the waveguide positions as we have demonstrated in the numerical simulations.  

 

 

Discretely-coupled architecture 

 

Architectures based on discretely-coupled waveguides in two-dimensional circuits are well 

documented in literature 

[Reck1994, Clements2016]. A 

design based on a triangular 

mesh of reconfigurable Mach-

Zehnder Interferometers (MZIs) 

was reported by Reck et al. in 

1994, which was followed by a 

rectangular mesh by Clements et 

al. in 2016. Both designs are 

capable of implementing 

universal transformations, yet 

Clements’ implementation 

improves on the previous work 

by halving the total circuit length 

while reducing differential losses 

between modes thanks to a more 

symmetrical geometry (see 

Figure 8). 

 

The 6-mode universal processor we fabricated features 15 MZIs arranged in the Clements 

configuration, with a total of 30 thermal phase shifters for its reconfigurability. The thermal phase 

shifters were fabricated starting from a thin gold film which is deposited on the sample and then 

Figure 8. Universal multiport interferometer designs. a) Triangular mesh. b) 

Rectangular mesh. c) Basic unit cell for both layouts, consisting of two phase shifters 

and two balanced directional couplers. Figure from Ref. [Clements2016]. 



 
 

 

 

ablated by a femtosecond laser [Ceccarelli2019]. To ensure low power dissipation and low thermal 

crosstalk among all of these phase shifters the circuit features a total of 60 deep isolation trenches 

fabricated by water-assisted laser ablation [Ceccarelli2020]. The layout of the universal processor is 

shown in Figure 9. 

 

Optical characterization 

The processor features a total 2.7 dB insertion loss at a wavelength of 785 nm. A preliminary 

characterization of the reconfigurability performance has been carried out by evaluating the power 

dissipation and thermal crosstalk of the two MZIs closest to the output of the circuit (MZI 14 and 

MZI 15 as in Figure 7) in both atmospheric pressure and in vacuum. Power dissipation has been 

characterized in terms of the electrical power necessary for a 2π phase shift (𝑃2𝜋), while thermal 

crosstalk is defined as the phase induced on an adjacent MZI as a percentage of the phase induced on 

the target MZI. These measurements are shown in Table 1: power dissipation for full reconfigurability 

in atmospheric pressure is about 30 mW, while thermal crosstalk is of the order of 15%. At a pressure 

of 2.5 × 10−3 mbar these values drop respectively to 11 mW and 2%. 

 

Pressure Measure MZI 14 MZI 15 

ATM 𝑃2𝜋 (mW) 36 28 

ATM Crosstalk (%) 22.3 13.4 

2.5 × 10−3 mbar 𝑃2𝜋 (mW) 11.5 11 

2.5 × 10−3 mbar Crosstalk (%) 2.5 1.9 
Table 1. Characterization of power dissipation and thermal crosstalk in standard conditions and in vacuum for the two rightmost 

MZIs of the 6-mode processor. 

The optical power at the bar output of an ideal MZI can be modeled as: 

𝒫𝑜𝑢𝑡 =
1 − cos(𝜙 + 𝜙0)

2
 ,  

(3) 

where 𝜙 is the phase shift induced by the internal phase shifter and 𝜙0 is the initial phase of the 

interferometer, which is randomly determined during fabrication and has to be characterized for each 

individual MZI in order to properly control the universal processor. There is a linear relation between 

induced phase and electrical power dissipated on the thermal phase shifter P: 𝜙 = 𝛼𝑃. In practice 

however, we control these devices by imposing a current I instead of an electrical power; for this 

reason we need to make some further considerations. 

Figure 9. Layout of the 6-mode universal processor. Gray rectangles represent 300 µm deep isolation trenches, yellow rectangles 

represent the thirty 10 µm wide phase shifters. The basic unit cell is highlighted in the top left by a green line. Fan-in and fan-out are 

added for compatibility with standard 127 µm fiber arrays. 



 
 

 

 

While the electrical power is related to the current by the resistance as 𝑅𝐼2, the resistance itself 

depends on the current, hence we must include a higher order term in the electrical power: 𝑃 =
𝑅0𝐼2 + 𝛽𝐼4, where 𝑅0 is the resistance of the phase shifter at room temperature and 𝛽 is a non-linear 

factor which accounts for this dependence of resistance on the current. Furthermore, due to thermal 

crosstalk, the phase shift 𝜙𝑖 imposed by the i-th phase shifter effectively depends on the electrical 

power dissipated on all the other phase shifters 𝑃𝑗 as: 

𝜙𝑖 − 𝜙0,𝑖 = ∑ 𝛼𝑖𝑗𝑃𝑗

𝑗

.  (4) 

In general, the matrix 𝛼𝑖𝑗 has dimensions equal to the number of phase shifters on the circuit. 

However, we assume that the horizontal thermal crosstalk between phase shifters on different 

columns can be neglected due to the large distance between them (in the order of millimeters due to 

the curvature radius of FLW waveguides, see Figure 9). This assumption significantly simplifies the 

matrix 𝛼𝑖𝑗 and reduces the number of measurements required to characterize and compensate the 

effect of thermal crosstalk. 

 

Switching unitary transformations 

The calibration procedure adapted from literature [Clements2016] has been performed along with 

initial measurements involving the implementation of unitary transformations. We implemented three 

types of switching unitaries: the 6 integer powers of the 6-dimensional Pauli-X gate, 4 switching 

unitaries (from input 2 to outputs 3-6) and 10 random permutations (see Figure 10). The fidelity of 

each of these unitary transformations has been calculated as: 

ℱ(𝑀𝑒𝑥𝑝, 𝑀) =
1

6
𝑡𝑟(𝑀𝑒𝑥𝑝

† , 𝑀),  
(5) 

where 𝑀 is the ideal unitray matrix implemented and 𝑀𝑒𝑥𝑝 is the measured unitary. 

The average fidelity for all of the unitaries measured is equal to ℱ𝑎𝑣𝑔 ± 𝜎 = 0.99676 ± 0.00048.  

 

 

  

Figure 10. Measured switching unitary transformations on 6-mode processor. a) Pauli 𝑋3gate. b) Switching unitary from input 2 to 

output 5. c) Random permutation. 
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