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What was planned (from Annex I:) 

D7.1: Development and classification of HQC based on non-adaptive linear optics [M12] 

Description: Report mapping the requirements for initial, proof of principle demonstrations of hybrid 

quantum computation (HPC) applications suitable for non-adaptive, photonic quantum sampling 

machines: Monte Carlo integration, Max-Haf approximate optimization, identification of dense 

subgraphs. Classification of tasks with the resources necessary for proof-of-principle demonstrations: 

amount and accuracy of squeezing parameter in inputs, complexity of the linear interferometer design, 

postselection overhead, number of different devices required (alternatively, the desired level of 

parameter tunability). 

 

 

  



 
 

 

 
  

What was done. 

 

 

1 Introduction 

 

In this report we investigate the feasibility of some hybrid quantum computation (HQC) tasks that 

are suitable for implementation using non-adaptive linear optics, in particular programmable 

interferometers with inputs consisting of either Fock states or Gaussian states. These HQC tasks are 

candidates for implementation using the devices in development as part of the PHOQUSING project. 

In section 2 we describe applications using Fock-state inputs, with Gaussian state inputs in section 3. 

In section 4 we point out some promising alternatives to investigate in the future and offer some 

concluding remarks. 

 

2 HQC using Fock-state inputs 

 

With Fock-state inputs comprising a total of n photons, the probability amplitudes of output events 

are a function of the permanents of n x n submatrices associated with the interferometer design, as 

described in [Aaro11]. Calculating the permanent, even approximately, is a problem known to be in 

the #P-hard computational complexity class, and this fact is the basis for the hardness of simulation 

of these processes. Using random interferometer designs and particular choices for the scaling 

between number of photons n and number of modes m, this motivated quantum computational 

advantage experiments generically called Boson Sampling, after the original proposal by Aaronson 

and Arkhipov [Aaro11]. In this section, we will focus on the first applications we have identified as 

promising for hybrid quantum computation using this set-up: quantum Bernoulli factories, variational 

quantum cloning machines, and verification of solutions of NP problems. 

 

2.1 Quantum Bernoulli factories  

 

In a classical framework, Bernoulli factories are a set of protocols associated to a function 𝑓 that take 

as input a sample obtained from a Bernoulli process with arbitrary (unknown) parameter 𝑝, and 

provide as output a sample obtained from a Bernoulli process with parameter 𝑓(𝑝). Such a problem 

has been completely theoretically characterized in [Kean94], by identifying the exact set of functions 

that can be constructed from a classical coin. In particular, it has been shown that there are set of 

functions which cannot be classically implemented, a prominent example being provided by the 

wedge function 𝑓𝑊(𝑝) = min⁡{2𝑝, 2(1 − 𝑝)} that has a relevant application for Markov processes.  

 

Recently, it has been proposed to extend such a framework to the quantum domain. A first proposal 

relies on what is called “quantum-to-classical” Bernoulli factories, where the input coin is replaced 

by a quantum system, while the output is still represented by a classical Bernoulli process. More 

specifically, quantum-coins are provided by pure states, which after measurement in the 

computational basis provide a classical output associated to a Bernoulli process. Quantum-to-classical 

Bernoulli factories are constructed to perform appropriate operations on the quantum coins before the 

measurement, which yields a classical output that can be processed by a classical Bernoulli factory. 

Quantum coins enable access to a larger set of transformations, allowing transformations to functions 

𝑓 not accessible to classical Bernoulli factories. In particular, in [Dale15] the complete set of functions 

that are enabled by such a quantum extension was characterized, showing also that the only required 

quantum operation in such framework is the capability of performing measurements in different 

bases, while no entangled measurements are strictly necessary. Recent experiments have reported the 

implementation of such a paradigm. In particular, in Ref. [Yuan16] a quantum-to-classical Bernoulli 

factory has been implemented by using superconducting qubits in the single-qubit regime, allowing 



 
 

 

 
  

for the implementation of the wedge function 𝑓𝑊 defined above. Similar results have been also 

obtained with photonic systems in [Pate19] by using polarization-encoded qubits, with an added 

analysis of the method’s robustness. 

 

The second extension, called a “quantum-to-quantum” Bernoulli factory, provides a further 

generalization by considering that both input and outputs are quantum coins (or qubits). In this way, 

the output state can be further used in quantum computation, allowing this randomness-processsing 

protocol to be a sub-routine in a larger computation. Theoretically, the class of functions associated 

to these processes have been characterized [Jian18]. However, proposals for experimental schemes 

as well as experimental demonstrations in the full quantum-to-quantum domain are currently very 

restricted. In particular, in the literature there is no experimental scheme available that can implement 

a general Bernoulli factory [Zhan20, Liu20]. Indeed, while schemes performing single operations 

(sum, product, inverse) are available, no approach reported up to now permits concatenations of 

sequences of operations. The latter is a crucial requirement to fulfil the full set of functionalities 

theoretically identified in [Jian18].  

 

Under the PHOQUSING project the nodes UNIROMA1, CNR, and LIN INL plan to develop and 

implement an experimental scheme for quantum-to-quantum Bernoulli factories based on the 

hardware developed within the project. The main aspect will represent the demonstration of the 

possibility of concatenating a sequence of operations. The first implementation will foresee the 

concatenation of two operations, while the scheme will be shown to be applicable for an arbitrary 

number of layers. Furthermore, we will provide a detailed investigation of the success probability of 

the scheme, to verify scalability for larger number of qubits. 

 

2.2 Variational quantum cloning machines 

 

A variational algorithm for quantum cloning was proposed recently in [Coyl20]. The basic idea is to 

use variational machine learning techniques to find near-optimal parameterized circuits for various 

quantum cloning tasks, with applications to attacks on quantum coin-flipping and key distribution 

protocols. The cloning tasks considered included universal and covariant quantum cloning, as well as 

cloning from a set of known quantum states. Besides the theoretical analysis and numerical results, 

the original paper [Coyl20] also implemented versions of these algorithms run on the superconducting 

quantum processing unit (QPU) Aspen-8 by Rigetti Computing. We identified this as an interesting 

application to consider for PHOQUSING’s projected photonic devices. In this section we report some 

preliminary results, obtained by a collaboration between the INL and Sorbonne nodes of 

PHOQUSING. These were part of the Bachelor’s thesis of student Sebastià Nicolau Orell, co-

supervised in 2021 by project partners Elham Kashefi (Sorbonne) and Ernesto Galvão (INL). 

 

The first possibilities that were investigated involved parameterizing general 4- and 6-mode linear-

optical interferometers, for experiments using two or three single photons (in dual-rail encoding). 

Appropriate cost functions were defined, using the fidelity of the clones as the key metric to optimize. 

We obtained 1-to-2 qubit universal quantum cloning machines, and 1-to-2, 1-to-3 phase-covariant 

cloning machines with near-optimal fidelities. 



 
 

 

 
  

 

In Fig. 1 (left panel) we report the clone 

fidelities as a function of the number of 

training steps, for 1-to-2 cloning and 6 

modes. On the right we show the fraction 

of events discarded by post-selection, due 

to the photons having left the dual-rail 

encoding, something we detect at the 

output. 

 

It is worth noting some characteristics of 

these first implementations that are specific 

to the photonic platform. The photonic 

optimization/learning was done directly using the physical platform’s parameters, i.e. phase shifters 

and beam-splitters. We introduced a more efficient learning procedure that uses Pauli eigenstates 

only, as opposed to uniformly drawn pure states – this resulted in faster learning due to the 2-design 

properties of Pauli eigenstates [Amba07]. Finally, the postselection cost can be included in the cost 

function, which is appropriate for photonic implementations of dual-rail qubits. We have 

experimented with that, as well as with using smaller photonic circuits, obtaining good results for 1-

to-2 universal cloning machines with only two dual-rail qubits (it is known that 3 qubits are necessary 

for optimal cloning fidelities). These lessons could be useful for other hybrid quantum computation 

schemes based on photonic devices. 

 

The preliminary investigations briefly described in this section were done using classically-simulated 

photonic circuits of the type under development in PHOQUSING, and the open-source package 

Strawberry Fields, developed by Canadian company Xanadu. We aim to extend this approach by 

experimenting with cryptographic applications, and other variational quantum algorithms, as they are 

suited to small-depth circuits with limited photon numbers. 

 

2.3 Verification of solutions of NP-hard problems under communication restrictions 

 

Computational problems in the complexity class NP have solutions that can be efficiently verified, 

even if finding them may be computationally hard. NP-hard problems are important for a multitude 

of applications, from graph theory and bio-informatics to optimization. If not enough information 

about the solution of an NP problem is revealed, the verification can instead take exponential time on 

a classical computer. In [Aaro08], this result on the limitation of the information about the solution 

to NP problems was shown to result in a setting where quantum computers can have a computational 

advantage. More precisely, for a problem of size N, if an encoding of a solution uses O(sqrt(N)log(N)) 

bits, the classical verification will take exponential time. Interestingly, quantum encodings of a 

solution of that same size allows for an efficient (polynomial-time) verification by a quantum 

computer. This means verifying the solution to NP-hard problems, under a constraint in the amount 

of information that is made available about the solution is a natural setting where quantum computers 

can have an exponential advantage over classical computers. It was argued in [Arra18b] that the 

restriction on the information made available about the solution may be justified in some situations 

due to privacy concerns in a cryptographic setting. 

 

In [Arra18b], it was shown that a linear-optical setup would be sufficient for implementing the 

quantum version of this verification test, without the need for measurement feed-forward or non-

linear optics. The simplest problem to be considered is the 2-out-of-4 satisfiability (SAT) problem, 

to which the famous 3-SAT problem can be reduced. The simplest linear-optical implementation 

Figure 1 1-to-2 qubit universal cloning using dual-rail encoding in 6 

modes. Clone fidelity (left) and fraction of events discarded at post-

selection (right), as a function of the number of training steps.  



 
 

 

 
  

suggested in [Arra18b] involves a problem of size N=4, but with solutions encoded using only log(3) 

bits. It requires 3 single-photon inputs, and a completely programmable 12-mode interferometer, with 

photodetectors at all output modes. 

 

Recently, a linear-optical implementation of this protocol was demonstrated that uses a different 

linear-optical setup: attenuated coherent inputs encoded using a phase modulator, a single balanced 

beam-splitter, and photo-detection [Cent21]. Information on the solution was encoded in the phases 

of a train of weak coherent pulses with up to N=14000 time-bins. This shows that this task allows for 

interesting resource trade-offs between different ingredients of this linear-optical set-up, in this case  

decreasing the number of linear-optical elements from O(N2) to a constant, at the cost of increasing 

the complexity of the preparation of input states. Implementation of a variation of these linear-optical 

implementations of the protocol for testing solutions of NP-hard problems remains in consideration 

as a possible goal within the PHOQUSING project. 

 

 

3 HQC using Gaussian-state inputs 

 

Gaussian state inputs, together with linear-optical dynamics and photodetection at the output 

comprise the so-called Gaussian Boson Sampling (GBS) paradigm [Hami17]. In 2020/21 there were 

two ground-breaking demonstrations of quantum computational advantage using photonic Gaussian 

Boson Sampling devices [Zhon20, Zhon21], as well as impressive proof-of-principle demonstrations 

of applications thereof using programmable, integrated photonic hardware of Canadian company 

Xanadu [Arra21]. Other research has described the use of GBS as a basic building block of a scalable 

architecture for photonic quantum computation [Bour21]. 

 

In this report we review the experimental requirements of the recent photonic HQC demonstrations, 

and outline the experimental requirements for other applications of Gaussian Boson Sampling. 

 

Gaussian Boson Sampling (GBS) [Hami17] devices use squeezed vacuum (and sometimes, also 

displaced/squeezed vacuum) to sample from a probability distribution that is proportional to the 

square of the hafnian of a matrix describing the setup (interferometer and squeezing parameters). The 

hafnian is related to the permanent, and its computation is also #P-hard (i.e., intractable). It is possible 

to encode any symmetric matrix into the interferometer, making this a natural way of encoding the 

adjacency matrix A of a graph. Since the probability distribution is proportional to the hafnian of a 

matrix built from the one describing the interferometer, GBS samples will be biased towards 

submatrices having high hafnians. Hafnians are functions that count the number of perfect matchings 

of a graph. Since this correlates with the graph’s density [Arra18], as a result the GBS distribution 

naturally samples from high-density subgraphs of A. This realization was formalized in [Arra18c], 

which defined the Max-Haf problem, proving it is NP-hard by reducing it to the maximal clique 

problem. 

 

This suggests that GBS samples may be computationally helpful as a source of high-density 

subgraphs, which can be explored in hybrid quantum/classical algorithms. Finding high-density 

subgraphs can be crucial in many applications, for example by identifying communities in social 

networks; interacting proteins in biology; or congestion in communication networks. For a review of 

graph-theoretical applications of GBS, see [Brom20]. 

 

For practical usefulness of GBS in applications, its complexity must scale favourably against the best 

known classical algorithms for the same tasks. For the case of graph-theoretical applications we 

describe in more detail below, a recent classical simulation algorithm was proposed that generates 



 
 

 

 
  

approximate samples of GBS-encoded undirected, unweighted graphs in time that is polynomial in 

the number of graph vertices [Ques20]. This means an asymptotic quantum computational advantage 

of GBS for problems involving undirected, unweighted graphs, if it exists, can only be polynomial. 

As we will briefly mention below, this is also the case for a proposal of using GBS for quantum 

chemistry calculations, for the estimation of Franck-Condon profiles of molecular vibronic spectra 

[Huh15]. 

 

Next we analyse the use of GBS in HQC for different applications, highlighting the experimental 

requirements of first demonstrations. 

 

3.1 Graph similarity 

 

As mentioned above, the adjacency matrix can be encoded in the interferometer of a GBS set-up. It 

has been shown that two graphs are isomorphic if and only if the GBS probability distributions arising 

from them is the same, up to a permutation [Brad21]. The GBS probabilities of single events, 

however, is typically not accessible experimentally, as the possible number of outcomes increases 

exponentially with the number of modes and average number of photons. To make a GBS-based 

graph similarity test practical, coarse-grainings of test results were proposed, lumping many different 

outcomes in single-bins for comparison [Brad21]. Under a particular coarse-graining, each graph will 

be represented by a feature vector of many components, all of which must have the same values for 

isomorphic graphs. Comparison of these feature vectors allows to identify not just graph isomorphism 

but to cluster graphs according to similarity, which may be useful for applications based on graph 

theory. 

 

Very recently there appeared the first experimental demonstration of a GBS-based graph similarity 

HQC [Arra21]. It used an 8-mode programmable photonic processor, and Gaussian states with up to 

5 detected photons composing a 3-dimensional feature vector. This enabled the characterization of 

16, 8-vertex graphs into four clearly separate groups of isomorphic graphs. Note that this task could 

be easily done visually, and some doubt was expressed with respect to the feasibility of getting a 

computational speed-up for this problem using GBS. In particular, it was observed that the effect of 

losses was not studied, and moreover that very good classical heuristics exist to characterize graph 

similarity, and which are therefore hard to outperform. Despite this negative outlook expressed in the 

experimental paper, some numerical simulations reported in [Schu20] used simulated GBS data to 

analyse similarity of graphs with between 6 and 25 nodes from different common datasets, showing 

GBS has comparable performance to classical approaches in the success rate for classifying graphs, 

at least using simulated, noiseless GBS devices (at great simulation computational cost). 

 

3.2 Dense subgraphs 

 

GBS can also be used to identify dense subgraphs of a given graph, in particular to find maximally-

connected subgraphs (cliques). Both primitives are useful for graph-based applications, and as 

mentioned before, exact solutions for some classes of problems are known to be NP-hard (e.g. finding 

the highest-density subgraph, or the maximal clique problem). The encoding of the adjacency matrix 

A of the graph into GBS device is as described before, using both the programmable interferometer 

and the choice of single-mode squeezing parameters. One experimental limitation is that we need as 

many modes as there are vertices in the full graph (or twice that number, for the simplest encoding); 

moreover, the squeezing parameters must be tuned according to the number of vertices of the dense 

subgraph sought, within limits set by the largest eigenvalue of A (as described in [Brad18]). These 

limitations make an experimental implementation harder. 

 



 
 

 

 
  

A preliminary investigation of this GBS application was done as part of the Master’s degree project 

of student Ana Filipa Carvalho, supervised at University of Minho by Ernesto Galvão. An ensemble 

E of 1000 random 16-vertex graphs was used. Each graph in the ensemble is created from a 12-vertex 

sub-graph with random edge density 0.2, joined to a 4-vertex complete graph by two randomly picked 

edges. Each 16-vertex graph was encoded in a GBS device with 16 modes, using Autonne-Takagi 

decomposition described in [Arra18], which results in the distributions of required single-mode 

squeezing parameters on the left of Fig. 2. On the right of Fig. 2, we see numerical evidence that GBS 

samples from a distribution peaked at high-density subgraphs, in comparison with a uniform, classical 

sampling of 4-vertex subgraphs. 

 

 
Figure 2 Left: Distribution of single-mode squeezing parameters in Autonne-Takagi encoding of the ensemble E of graphs into linear-

optical interferometers with squeezed-state inputs. Right: Classical versus quantum performance at identifying dense 4-vertex 

subgraphs of ensemble E. The classical approach consists of picking 4-vertex subgraphs randomly (and uniformly), whereas the 

quantum approach uses samples from a GBS machine. The x-axis shows number of edges of the 4-vertex subgraphs sampled, showing 

evidence that GBS has a distribution peaked at high-density subgraphs. 

For these preliminary simulations, we see that the range of squeezing parameters necessary are within 

experimental reach for GBS experiments with a 16-mode programmable device. A more realistic 

comparison could include limited accuracy in the squeezing parameters, losses in the interferometer, 

and comparison against more sophisticated classical algorithms for dense sub-graph sampling. 

 

3.3 Simulation of molecular vibronic spectra 

 

In the previous sub-section we reviewed some graph-theoretic applications of GBS, all fundamentally 

based on the fact that GBS devices sample from a distribution that is proportional to the hafnian of 

submatrices that describe the device, which correlates with the subgraph’s density. Here we briefly 

describe another type of application of GBS devices, to certain quantum chemistry computations. 

 

The first proposed application of GBS to quantum chemistry was in the evaluation of vibronic 

molecular spectra [Huh15], more specifically the Franck/Condon profile of transition probabilities 

using Duschinsky’s relation [Dusc37]. In [Arra21] a GBS-based implementation was described to 

simulate the vibronic spectra of two molecules: ethylene (C2H4) and (E)-phenylvinylacetylene 

(C10H8). Even though in general squeezing and displacement of all modes may be necessary for best 

results, in this implementation no displacement was used, and a single mode featured a squeezed 

vacuum input (for each block of fully programmable 4-mode interferometers used). 

 

Very recently, it was realized that a polynomial-time algorithm for the same task can be devised, 

based on efficient simulation of Gaussian states and dynamics, as reported in a yet-unpublished, 

private communication by J. M. Arrazola [Arra21b], and in the blog post [Aaro20]. Together with 

the new, state-of-the-art classical simulation algorithm of GBS reported in [Ques20], this cast doubts 

on whether other HQC applications of GBS to quantum chemistry [Joha20] can offer significant 

speed-up over approaches that are purely classical, even if quantum-inspired. 



 
 

 

 
  

 

4 Outlook and perspectives 

 

Gaussian Boson Sampling (GBS) use non-adaptive linear optical interferometers associated with 

Gaussian state inputs for advantage in hybrid quantum computation (HQC) tasks in graph theory and 

quantum chemistry. We have mapped the experimental parameters used in the initial experimental 

demonstrations of such applications (graph similarity, simulation of molecular vibronic spectra), and 

the requirements for a proof-of-principle demonstration of an algorithm to find dense subgraphs. 

Recent theoretical developments about classical algorithms for vibrational molecular spectra 

simulation [Arra21, Aaro20] and graph-theoretical applications [Ques20] put into question whether 

GBS applications can decisively outperform a purely classical approach. Research into GBS may still 

reveal interesting applications for NISQ-era photonic computers, perhaps by exploring harder-to-

simulate GBS settings corresponding e.g. to the encoding of weighted and/or directed graphs in GBS 

devices. Thinking in the longer-term, GBS devices are useful building blocks for Gottesman-Kitaev-

Preskill (GKP) continuous-variable encodings for qubits [Gott01], as shown in e.g. [Bour21]. This 

means GBS devices may play an architectural role in the longer-term goal of developing error-

corrected, scalable photonic quantum computers. 

 

We have also described recently-proposed applications of non-adaptive linear-optical interferometers 

using Fock-state inputs. These are some of the initial applications we aim to explore experimentally 

using the devices developed under the PHOQUSING project: 

 

• Randomness manipulation using quantum-to-quantum Bernoulli factories 

• Verification of solutions of NP problems under constraints on the information available 

• Quantum learning of photonic cloning machines for cryptographic applications 

 

We expect to refine the understanding of these applications as the project develops, proposing new 

variations in a back-and-forth interaction between theory and experiment. 
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